Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 25(3): 368-380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35732582

RESUMO

Cadmium (Cd) stress restricts maize growth and productivity severely. We aimed to investigate the effects of Hemin on the metabolism of sucrose and nitrogen and endogenous hormones in maize under cadmium stress. Maize varieties 'Tiannong 9' (cadmium tolerant) and 'Fenghe 6' (cadmium sensitive) were grown in nutrient solutions to study the effects of Hemin on maize physiological and ecological mechanisms under cadmium stress. The results showed that Hemin mediated the increase of sucrose content and the activities of key enzymes sucrose phosphate synthase (SPS) and sucrose synthase (SS) in maize leaves under cadmium stress. Soluble acid invertase (SAInv) and basic/neutral invertase (A/N-Inv) enzyme activities in leaves were decreased significantly, and sucrose accumulation in leaves was increased. Hemin also mediated the increase of NO3- content in leaves, the decrease of NH4+ content and the increase of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase activity (GOGAT) and glutamate dehydrogenase (GDH) enzyme activities under cadmium stress. The contents of IAA, ZR, and GA in leaves and roots increased, ABA, MeJA, and SA decreased, and IAA/ABA, ZR/ABA, and GA/ABA increased under cadmium stress. Our study showed Hemin can alleviate cadmium stress in maize by enhancing sucrose and nitrogen metabolism and regulating endogenous hormones.


This work further investigates the effects of Hemin on the metabolism of sucrose and nitrogen and endogenous hormones in maize under cadmium stress, which, hopefully, is to guide Hemin application to maize field resilience production. It also explains that Hemin is beneficial for dry matter accumulation and transport, alleviated ammonia toxicity and nitrogen metabolism disorder, and induced the changes of endogenous hormone content and the adaptive hormone ratio balance under cadmium stress.


Assuntos
Cádmio , Zea mays , Cádmio/metabolismo , Hemina/metabolismo , Hemina/farmacologia , Sacarose/metabolismo , Sacarose/farmacologia , Biodegradação Ambiental , Hormônios/metabolismo , Hormônios/farmacologia , Nitrogênio/metabolismo , Nitrogênio/farmacologia
2.
Gels ; 8(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421563

RESUMO

At present, an oral tumor is usually treated by surgery combined with preoperative or postoperative radiotherapies and chemotherapies. However, traditional chemotherapies frequently result in substantial toxic side effects, including bone marrow suppression, malfunction of the liver and kidneys, and neurotoxicity. As a new local drug delivery system, the smart drug delivery system based on hydrogel can control drug release in time and space, and effectively alleviate or avoid these problems. Environmentally responsive hydrogels for smart drug delivery could be triggered by temperature, photoelectricity, enzyme, and pH. An overview of the most recent research on smart hydrogels and their controlled-release drug delivery systems for the treatment of oral cancer is given in this review. It is anticipated that the local drug release method and environment-responsive benefits of smart hydrogels will offer a novel technique for the low-toxicity and highly effective treatment of oral malignancy.

3.
Front Plant Sci ; 13: 993675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160952

RESUMO

Cadmium (Cd) stress is one of the principal abiotic stresses that inhibit maize growth. The research was to explore (hemin chloride) Hemin (100 µmol L-1) on photosynthesis, ascorbic acid (AsA)-glutathione (GSH) cycle system, and polyamine metabolism of maize under Cd stress (85 mg L-1) using nutrient solution hydroponics, with Tiannong 9 (Cd tolerant) and Fenghe 6 (Cd sensitive) as experimental materials. The results showed that Hemin can increase leaf photosynthetic pigment content and ameliorate the ratio of Chlorophyll a/chlorophyll b (Chla/Chlb) under Cd stress. The values of ribose 1, 5-diphosphate carboxylase/oxygenase (RuBPcase) and phosphoenolpyruvate carboxylase (PEPCase), and total xanthophyll cycle pool [(violoxanthin (V), antiflavin (A) and zeaxanthin (Z)] increased, which enhancing xanthophyll cycle (DEPS) de-epoxidation, and alleviating stomatal and non-stomatal limitation of leaf photosynthesis. Hemin significantly increased net photosynthetic rate (Pn ), stomatal conductance (gs ), transpiration rate (Tr ), photochemical quenching coefficient (qP), PSII maximum photochemical efficiency (Fv/Fm ), and electron transfer rate (ETR), which contributed to the improvement of the PSII photosynthetic system. Compared with Cd stress, Hemin can reduce thiobartolic acid reactant (TBARS) content, superoxide anion radical (O2 -) production rate, hydrogen peroxide (H2O2) accumulation, and the extent of electrolyte leakage (EL); decreased the level of malondialdehyde (MDA) content and increased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); slowed the decrease in dehydroascorbic acid reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activity and the increase in glutathione reductase (GR) and ascorbate peroxidase (APX) activity in leaves; promoted the increase in AsA and GSH content, decreased dehydroascorbic acid (DHA) and oxidized glutathione (GSSG), and increased AsA/DHA and GSH/GSSG ratios under Cd stress. Hemin promoted the increase of conjugated and bound polyamine content, and the conversion process speed of free putrescine (Put) to free spermine (Spm) and spermidine (Spd) in maize; decreased polyamine oxidase (PAO) activity and increased diamine oxidase (DAO), arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) enzyme activities in leaves under Cd stress.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31180896

RESUMO

Survival analysis is a popular branch of statistics. At present, many algorithms (like traditional multi-tasking learning model) cannot be applied well in practice because of censored data. Although using some model (like parametric regression model) can avoid it, they need strict assumptions. This undermines the very nature of things, which is very detrimental to the study of practical problems. The method proposed in this paper can apply well to the censored data, but does not need to make any additional assumptions about the original problem. It can be said that it breaks through the above two kinds of major limitations. The algorithm is a kind of inductive transfer learning method, which can fully obtain the information in the censored data, using domain-specific information implicit in each feature to enhance the generalization capability of the model. We also used two common performance metrics as criteria to judge the predictive performance differences between the models in this article and those of other mainstream models. The results show that the model proposed in this paper is 10 ∼ 15 percent higher than other mainstream models, which proves that our multi-task learning model has a great advantage in the survival analysis of cancer genes.


Assuntos
Algoritmos , Aprendizado de Máquina , Neoplasias , Análise de Sobrevida , Biologia Computacional/métodos , Bases de Dados Factuais , Genes Neoplásicos/genética , Humanos , Neoplasias/genética , Neoplasias/mortalidade
5.
PLoS One ; 13(9): e0203626, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183770

RESUMO

Maize (Zea mays L.), an important agricultural crop, suffers from drought stress frequently during its growth period, thus leading to a decline in yield. 2-(3,4-Dichlorophenoxy) triethylamine (DCPTA) regulates many aspects of plant development; however, its effects on crop stress tolerance are poorly understood. We pre-treated maize seedlings by adding DCPTA to a hydroponic solution and then subjected the seedlings to a drought condition [15% polyethylene glycol (PEG)-6000 treatment]. The activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR) were enhanced under drought stress and further enhanced by the DCPTA application. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) declined continuously under drought stress; however, the activities partially recovered with DCPTA application. Up-regulation of the activities and transcript levels of APX, GR, MDHAR and DHAR in the DCPTA treatments contributed to the increases in ascorbate (AsA) and glutathione (GSH) levels and inhibited the increased generation rate of superoxide anion radicals (O2·-), the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and the electrolyte leakage (EL) induced by drought. These results suggest that the enhanced antioxidant capacity induced by DCPTA application may represent an efficient mechanism for increasing the drought stress tolerance of maize seedlings.


Assuntos
Etilaminas/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Antioxidantes , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Secas , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
6.
Sci Rep ; 8(1): 6600, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700427

RESUMO

Unlike daily routine images, ultrasound images are usually monochrome and low-resolution. In ultrasound images, the cancer regions are usually blurred, vague margin and irregular in shape. Moreover, the features of cancer region are very similar to normal or benign tissues. Therefore, training ultrasound images with original Convolutional Neural Network (CNN) directly is not satisfactory. In our study, inspired by state-of-the-art object detection network Faster R-CNN, we develop a detector which is more suitable for thyroid papillary carcinoma detection in ultrasound images. In order to improve the accuracy of the detection, we add a spatial constrained layer to CNN so that the detector can extract the features of surrounding region in which the cancer regions are residing. In addition, by concatenating the shallow and deep layers of the CNN, the detector can detect blurrier or smaller cancer regions. The experiments demonstrate that the potential of this new methodology can reduce the workload for pathologists and increase the objectivity of diagnoses. We find that 93:5% of papillary thyroid carcinoma regions could be detected automatically while 81:5% of benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention.


Assuntos
Aprendizado Profundo , Câncer Papilífero da Tireoide/diagnóstico por imagem , Ultrassonografia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Curva ROC , Sensibilidade e Especificidade , Software , Câncer Papilífero da Tireoide/patologia , Ultrassonografia/métodos , Ultrassonografia/normas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA